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SUMMARY 

Several open boundary conditions (OBCs) are compared and evaluated in the framework of the SIMPLE 
algorithm using staggered and non-staggered grid systems. The benchmark laminar flow test cases used for 
the OBC evaluation are Poiseuille-Benard flow in a channel and stratified backward-facing step flow. The 
investigated OBCs are linear explicit step space extrapolation, Orlanski's monochromatic wave, and 
pressure extrapolation. Orlanski's and pressure extrapolation open boundary treatment for unsteady and 
steady flows, respectively, yield little reflection and has proved to  be adequate for engineering calculations. 
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INTRODUCTION 

Most CFD simulations of real fluid flow problems are sought in a computational domain that 
only overlaps the physical domain in a very small region. This is achieved by introducing one (or 
several) open boundary conditions (OBCs) at some arbitrary finite distaxe. As there is no 
fluid-dynamic information outside of the computational domain, flow modelling assumptions are 
made at the boundary location and are dependent upon the physical problem and the mathemat- 
ical character of the governing equations. 

For problems governed by hyperbolic systems of equations, a large amount of fundamental 
studies have been conducted, aiming to analyse the OBC influence on the global accuracy of the 
difference approximation. '3  Several non-reflecting OBCs have been developed to permit the 
phenomena generated in the domain to pass through the boundary without undergoing signific- 
ant distortion and without influencing the interior s ~ l u t i o n . ~  - 6  

Calculations of incompressible fluid flow, comprising regions dictated by elliptic character of 
the governing equations, usually have the outflow boundary located too far from the region 
where the solution is sought. The argument is that, far from the artificial boundary, the solution 
will be negligibly contaminated by inherent modelling or numerical errors due to the prescribed 
Dirichlet or von Newman type of boundary condition. Dekruif and Hassan7 investigated the 
implications of truncating semi-infinite physical domains on the accuracy of the solutions of 
laminar flow past a flat plate with a forward-facing step. The truncated physical domain yields 
inaccurate solutions compared to those obtained in a mapped plane. Shyya, investigated the 
influence of von Newman conditions for several flows. including the simultaneous presence of 
inflow and outflow through the open boundary. For flows with multiple recirculating eddies 

0271-2091 /93/050403--17$13.50 
1993 by John Wiley & Sons, Ltd. 

Recehed 22 November 1991 
Revised 6 August 1992 



404 M. H. KOBAYASHI, J. C. F. PEREIRA AND J. M. M. SOUSA 

across the open boundary, the numerical stability of the computations was related to the 
Reynolds number. In addition, waves generated by the numerical procedure were reflected at the 
boundary. A partial cure to reduce numerical reflections at the boundaries to a negligible order is 
the use of Sommerfeld-type of radiation c0nditions.l This method assumes a travelling wave that 
is convected through the open boundary. Different implementations of the method were per- 
formed" - '' by investigating the implications of different wave equation discretization schemes, 
or procedures to estimate phase speed, etc. 

A common remark of previous investigations using primitive variable formulation is the 
sensitivity of the results to pressure open boundary conditions.', l o  This is of particular relevance 
due to a large number of finite volume computations being performed using the SIMPLEi3 
family of pressure-velocity algorithms, with staggered grid systems, and also due to the increasing 
popularity of non-staggered grid systems, using pressure-weighted interpolation method.14* l 5  

The main objective of this work is to compare several numerical treatments of open boundary 
conditions, incorporated in SIMPLE algorithms with special emphasis to non-staggered grid 
systems. The selected flow cases correspond to Poiseuille Btnard flow in a channel (see Figure 
l(a)) and stratified flow over a backward-facing step (see Figure l(b)). These flows were predicted 
by Evans and Paoluccil' and Leone," respectively, and their predictions are used as benchmark 
solutions. 

NUMERICAL ALGORITHMS 

Flow equations 

Assuming a planar, two-dimensional, laminar flow of a Newtonian fluid induced by buoyancy 
forces (using the Boussinesq approach), the Navier-Stokes equations, continuity equation and 
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Figure 1. Computational domains and boundary condilions: (a) Poiseuille~  ben nard flow in a channel; (b) stratified 
backward-facing step 
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energy conservation equation can be expressed in non-dimensional vectorial notation as follows: 

continuity 
v . v = o ,  

momentum equation 

(2) 
(7V 
, + V . ( v @ v ) =  - V p + R e - ' V 2 v + F r - '  Tk,  

energy equation 
d T  
- + V - ( v  T )  = P e - ' V 2  T, 
at (3) 

where v is the velocity vector, p is the static pressure, T is the temperature and k is the upward 
vertical unit vector, R e r u l i , ,  H/v  is the Reynolds number and F Y - ( U , ~ ~ / U ~ ~ ) ~  is the Froude 
number. Here U l i n  is the average inlet velocity, H is the height of the channel, u ln=NH is the 
buoyancy velocity, with N = (  pgAT/H)"2 standing for the Brunt-Vaisala frequency; p is the 
volumetric expansion coefficient and g is the acceleration due to gravity. These equations may be 
cast in a form of the general transport equation which is used for discretization purposes: 

a4 l3 ( i-9) -+- uj4-r- =s,, 
P t  3x3 (4) 

where q5=(ui, T), ui being the velocity component in the x i  Cartesian direction, T=(Re- ' ,  P e - l )  
and S, stands for the pressure gradient and the buoyancy force. 

Discretization prnceduw 

The flow equations are discretized using a finite-volume method. First, equation (4) is integ- 

[: 1;. $:+At 2 at dtdx '  dX2 +jtt+At { j: 3 ox dxl  dx2}dt=jtr'Af 1; 1; S,dxl dx2 dt, (5) 

Two numerical algorithms were used. The first employs the Euler implicit temporal discretiz- 

rated over the control volume and time step: 

where J i  stands for the convective and diffusive fluxes in the x i  direction. 

ation, i.e. equation (5) becomes, after integration using the Gauss theorem, 

where p@+ is the averaged source term. 

ences approximation is used for diffusion terms. For example, & is approximated by 
The 13-point QUICK scheme". l9  is used for convection discretization, while central differ- 

Ax 
2 +w=ao+a, -++a, (7) 

where c, takes into account the grid non-uniformity in a staggered grid and is equal to 1 for 



406 M. H. KOBAYASHI, J. C. F. PEREIRA AND J. M. M. SOUSA 

a non-staggered one. Coefficients aj are obtained from the assumption of a quadratic surface: 

4 =a,  +a, t +a3 t 2 +  u,q+ usq2+ a&q. (8) 
A staggered grid system is used together with the standard (in the local reference frame (t, q )  
oriented with the velocity components) SIMPLE algorithm to correct the velocity field and to 
calculate the pressure field. 

The second algorithm employs non-staggered grids, where all variables are stored in the same 
place, at the centre of the control volume (CV). Finite difference equations are derived by 
integration of equation (4), with d(b/at=O, over the respective CV. The convective flux is 
evaluated by using the non-symmetric second-order upwind scheme and the Pressure-Weighted 
Interpolation Method (PWIM). These approaches lead to the following equation, e.g. for the 'e' 
face: 

where 
J1", = U I  e 4 e  > (9) 

(10) 
(be  = (bE + ((bE-&E)fXA if ule<0,  

(be = 4 p  + (+p  - 4 E ) ( 1  -fxf) if U l e  >O, 

where J ;  is a convective flux and fx is the linear interpolation factor which takes into account 
the grid non-uniformity. Fluxes through other faces are calculated similarly. 

When using a staggered grid system, the convective fluxes are evaluated directly, since the 
velocity components are stored at the CV faces. For non-staggered grids the ui-momentum 
equations are arranged in the form 

as obtained from the application of the finite-difference equation at  point P and at a surrounding 
point C = E, W, N, S. At control volume face c between points C and P, the velocity value is given 
by 

- 

uiC = H'(ui,) - ( Q i G ' p ) ,  + Sui +(1- u)ufC, (12) 

where the operators H i  and Qi are defined by 

. Ai 
Ql-npu, .  

Here Ai  is the area of the control volume faces, aim and a? are the finite-difference coefficients 
representing the convection and diffusion contribution in the discretized momentum equations; 
the overbar denotes linear interpolation. Pressure gradient is computed explicitly in equation (12) 
to ensure pressure-velocity coupling. This procedure for pressureevelocity coupling can be used 
with all algorithms of the SIMPLE family. 

Pressure-aelocily coupling 

Due to the OBC influence on pressure field, the basic SIMPLE algorithm is briefly outlined for 
a better understanding of the results presented in this paper. The algorithm is common to 
staggered or non-staggered grids. 
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Figure 2. Grid system. Continuity cquation is only applied to the shaded area for OBC2: (a) staggered grid: 
u,-momentum equation; (b) staggcred grid u,-momentum equation 
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After the momentum equations have been solved, a velocity field u f  is obtained. The combina- 
tion of momentum and continuity equations, under the assumption that ( p *  = p + p '  and 

correction: 
u**- - u ,  * +u:) ,  yields the derivation of a velocity correction as a function of the pressure 

U: = Qi6'p' (14) 

u P P L = C  anbphb + S m ,  (15) 

(16) 

and using u** in the continuity equation yields the following pressure correction equation: 

where nb = E, W, N, S and S, is given by mass balance 

S m = ~ T e A ~ Z  - uTwAx2 + u;,Ax' -uZ,AX'. 

In order to improve convergence, an under-relaxation factor, xp, is introduced, yielding the 
following equation for u::  

S'p'  u!=Q.- 1 1  

ZP 

The value of up is equal to 1 for staggered grids and 0.8 for non-staggered grids. After solving the 
pressure correction equation, u l ,  u2 and p are updated. The coefficients of the energy conserva- 
tion equation are solved to obtain the temperature field and this outer cycle is repeated until 
convergence criteria are satisfied. An inner cycle to solve the algebraic system of equations is 
performed using the strongly implicit scheme; see References 20 and 21. 

Open houndury conditions 

The following OBC numerical treatments were used: 

OBCl : An explicit step space extrapolation using explicit one-sided difference to approximate 

OBC2: Mass conservation at half-CV. The outflow boundary condition for u,-velocity was 

a zero first derivative along the main flow direction, 4;" =($;. 

given by mass conservation (see Figure 2(a)): 

u;; = (&AX - u;,, AX + u;,Ax2)/Ax2. (18) 

The open boundary condition treatment for u2-velocity was evaluated from mass balance at 
haif-CV (see Figure 2(b)): 

At the lower solid wall, uZRs is equal to zero and u ~ ~ , ,  can be calculated explicitly using equation 
(19). This procedure is applied recursively to obtain all the values of u2 at the outlet boundary. 

OBC3: A monochromatic travelling wave, Orlanski' boundary condition 

was assumed at the boundary with prescribed wave speed as the mean channel velocity, c=K, 
yielding 
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OBC4: Explicit step space extrapolation using linear extrapolation from two interior grid 

OBC5: This boundary condition was specially developed to be used with non-staggered grid 

nodes. 

arrangement. A linear profile for the outflow pressure field is assumed, i.e. 

P B  = PP + (PP-  P W ) (  -fxf). (22) 

However, for the boundary velocity correction, if the velocity is simply extrapolated from the 
interior nodes, mass will not be conserved, and if equation (17) is used, instabilities will propagate 
upstream and divergence may occur. On the other hand, if the velocity is extrapolated from 
interior nodes to conserve mass, uic at boundary is zero and no information from the boundary is 
needed. In this case the velocity will depend on the pressure only from the momentum equation 
and a weighting pressure must be used in order to prevent instabilities. In this work the following 
alternative boundary condition is used. 

The mass boundary lies half-way in the middle of the control volume, so, the mass balance for 
the CV reads 

puq,*Ax' pu$S*Ax' 
2 2 

= 0, - pu:; A x 2  - p u:$ A x 2  + 
where uip is naturally linked to the prescribed p i = O  at exit by the following equation: 

1 
UP 

u;p=- ( p b - p b ) .  

As can be seen from equations (1 19, (23) and (24), velocity at point P is related to the outlet 
pressure via both momentum and pressure correction equations. This procedure enhances the 
pressure velocity coupling, thus improving the robustness and the convergence properties of the 
method. 

RESULTS AND DISCUSSlON 

Poiseuille-BCnard.flow in a channel 

Numerical predictions were obtained for the following values of relevant parameters: Re = 10, 
F r =  ljl50 and Pr=2/3, for the geometry depicted in Figure l(a). The computational grid was 
uniform in both co-ordinate directions [Ax', Ax2]  = [0.1,0.04], containing 102 x 27 control 
volumes and covering the computational domain up to x 1  = 10. An Euler implicit temporal 
discretization with a time step At=0.055JFr was used, together with the QUICK scheme for 
space discretization. 

Figure 3(a) shows the streamlines obtained with OBC1, corresponding to time tT  when 
a minimum in temperature occurs at the location x'=5.0, x2=0.5 (see Figure 3(b)). Figure 3(c) 
shows the location of the velocity components maxima at  t T .  The figures show the start-up region 
as well as the flow region affected by the incorrect outflow conditions. The velocity field 
corruption at the boundary has propagated four vertical channel heights upstream of the 
outflow. 

Table I shows the flow parameters obtained using OBC3 and those reported by Evans and 
Paolucci16 using a similar space and time increments [Ax', Ax', At] = [0.1/,/2, 0.05/,/2, 
0.05JFrl .  The results show good agreement despite the fact that they have considered a much 
longer computational domain, up to x1 = 20. Small differences in the mean flow parameters may 
arise due to the relative weight of the affected values, close to outflow boundary. 
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Figure 3. Results for the computational domain up to x’ = 10: (a) streamline contours at f T ;  (b) temperature minimum in 
time, t ,  =0.5; (c) velocity components maxima at tT 
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Table I .  Evaluation of flow parameters obtained with OBC3 located at x’ =5, and comparison with reference values 

2.576 4.183 0.82 -2.566 014 4.806 054 -4.874 0.50 

Evans and 1.290 1.400 2.568 4.211 0803 -2.613 0.138 4.950 0.51 -4.951 0.49 

-0.013 OBC3 1.283 1.4 +0.14h 

Pa01ucci’~ 

To avoid any confusion between convective or temporal discretization errors and the specific 
outflow numerical treatments, the following strategy was employed. Any accurate OBCs should 
give a solution equal to the one obtained at the same location but with the outflow section located 
far downstream. So, first we calculate the flow up to x’ = 10 using 102 x 27 control volumes; 
Secondly, calculations are performed with the outflow located at x’ = 5 and using the equivalent 
number of grid nodes (51 x 27); the dependent variables (ui, p ,  T )  calculated at x1 = 5 using the 
large domain are assumed to be the benchmark solutions to compare with those calculated when 
the outflow coincides with this plane (x’ = 5). 

Figures 4(ab4(e) show the field plots of velocity vectors, streamlines, vorticity, pressure and 
temperature contours, respectively. Each figure shows four plots, the first, denoted as EXACT, 
obtained in a computational domain x’ E [0, lo] displaying only to x1 = 5 (see Figure 3(a)). The 
other three plots correspond to OBC1, OBC2 and OBC3 numerical treatments. All the figures 
were obtained at time t=tT .  The absolute value of this time is arbitrary, since the rolls are 
convected downstream. The results show that large differences exist between the solutions for 
various OBCs. The corrupted flow resulting from OBCl reaches the start-up region. The length 
of the region affected by outflow boundary conditions can be seen more clearly in Figure 5. The 
monochromatic travelling wave, OBC3, yields results closer to the benchmark solution, but still 
does not ensure full transmission of all waves at the boundary. However, the local wave speed, 
assumed to be equal to the mean bulk velocity, is 8% in error compared to the calculated 
wavelength and wave period. The implementation of OBC4, using linear extrapolation for 
temperature, did not improve the results because the temperature distribution displays a min- 
imum in the OBC location, at t = t T ,  as mentioned before. 

Velocity profiles at the boundary, x 1  = 5, are shown in Figure 6(a) and the calculated stream- 
function and temperature distribution in Figures 6(b) and 6(c), respectively. OBCl is clearly 
erroneous. OBC2 ensures the incompressible condition for velocity at half-control volume face 
close to the outflow and, therefore, an improvement in the velocity field was obtained. The results 
shown by OBC3 yield the best results among the implemented OBC treatments, in agreement 
with the previous results.” 

The Poisson equation for pressure correction embodied in the SIMPLE algorithm does not 
require special care in the specification of boundary conditions. Pressure correction is zero when 
velocity is prescribed such as inlet, walls or outflow conditions. Several other finite-difference 
methods, e.g. MAC, pseudo-compressibility, fractional-step or projection methods and other 
methods, express pressure directly in terms of a Poisson equation replacing the mass conservation 
equation. The implications and selection of boundary conditions have been discussed; see 
References 23-26. However, the similarities between the two procedures say, the SIMPLE 
algorithm and the pressure Poisson equation for incompressible flows has not been extensively 
addressed.26 When the SIMPLE algorithm is used, the implied boundary condition for a pressure 
Poisson equation at an outflow portion of the domain should be found by solving the pressure 
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gradient from the momentum equation using the calculated velocity field. The opposite is also 
true, given a converged solution using the SIMPLE algorithm: the implied gradient pressure 
condition at the outflow may be obtained from the pressure Poisson equation. 

Stratified pow over a hacktilard-facing step 
The second test case corresponds to the stratified flow over a backward-facing step proposed 

by Leone” (see Figure l(b)). The governing flow parameters are the same as in Leone’s work. i.e. 
P r = l ,  Fr=16/9 and Re=800. These numbers yield a value of 3.6 x lo5 for the Grashof 
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Figure 4. Field plots at t,, for the different OBC treatments: (1) OBC at x =  10, exact solution; (2) OBC1; (3) OBC2; 
(4) OBC3. (a) velocity vectors; (b) streamlines; (c) vorticity contours; (d) pressure contours; (e) temperature contours 
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Figure 4. (Continued) 
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Figure 5. Velocity components maxima for the different OBC treatments 

(Gr = Re2/Fr)  and Rayleigh (Ra = Pr Gr) numbers. As in the previous sections, computations 
have been carried out for a longer and a shorter domain corresponding to = 15 and x,?,,~~ = 7 ,  
respectively (cf. Figure 1 (b)). 

Figure 7 shows the streamlines and isothermal maps obtained using the proposed open 
boundary condition for xkax = 15. The main flow features, viz. the positions and strengths of the 
eddies, as well as the temperature distribution, are well predicted. The streamlines and temper- 
ature contours, using the same contour values as in Figure 7 ,  are shown in Figure 8 for x iax  = 7 .  
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These results indicate good agreement between the present predictions and the solutions obtained 
by Leone.17 

Table I1 lists the locations, sizes, strengths and positions of streamfunction maxima for the five 
eddies. A comparison of the predicted values and the reference values indicates that the strengths, 
positions and lengths of the eddies are well predicted. Table 111 presents the differences between 
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Figure 6. Transverse profiles at outlet boundary for the different OBC treatments: (a) velocity components; (b) stream- 
function; (c) temperature 
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Figure 7. Steady-state contours for xA,,= 15: (a) streamlines; (b) temperature contours 

Figure 8. Steady-state contours for xLdx = 7: (a) streamlines; (b) temperature contours 
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long- and short-domain results for the items listed in Table 11. As can be seen from this table, the 
differences between the results obtained using shorter or larger domains are very small compared 
to the differences between them and the reference values. This fact clearly indicates the insensitiv- 
ity of the predictions using OBC5 on the position of the outlet station. 
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Figure 9. Transverse profiles. (a) u,-velocity: ( I )  xi,, = 7, x = 0; (2) s,& =7, X '  = 3; (3) x i a x  = 7, (4) daX = 15, x' = 0; (5)  
xfn., = 15, xi = 3 ;  (6)  xAax I 15, x 1  =7; (7) xfn,,= = 15, x1 = 15; (8) Leone' ', x '  -0; (9) Leone17, x '  =3;  (10) Leonei7, x' =7; 
(11) Leone", x'=15;(b)u2-velocity:(I) ~~,,=7,.~'=3;(2)x,! , , ,=7,~'=7;(3)x,&,,=lS, x1=3;(4)x;,,=l5, x '=7;(5) 
x;,,=15, x'=15; (6) Leone", x'=3; (7) Leone", x '=7;  (8) Leone", .x1=15; (c) temperature (see Figure 9(a)); 

(d) vorticity (see Figure 9(a)) 
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Figure 9. (Continued) 

Finally, Figure 9 shows transverse profiles of velocity, temperature and vorticity. The close 
agreement between predictions and reference values, for both short- and long-domain solutions, 
indicates that the overall resolution of the flow field is adequate. The only difference in the 
transverse velocity component at x 1  = 3 represents less than 5% of the reference velocity and has 
no consequence on the solution field since it is one order of magnitude smaller than the 
streamwise velocity component (see Figure 9(d)). Here we should note that the transverse velocity 
discussed here cannot be predicted at all by using the commonly adopted OBCl (cf. Figure 6(a)). 
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Table 11. Comparison of eddy positions and lengths with reference values using OBC5 for xi,,,=7 and 
XAax = 15 

Eddy 
Maximum x 1- x 2- 

Start x1  Stop x' Length value co-ordinate co-ordinate 

x,,, = 7 0 0.255 
1 (bottom) x,,,= 15 0 0.284 

Leone'' 0 0.356 
Xm,, = 7 0.255 2.349 

Leone ' 0-356 2.498 
2 (bottom) x,,, = 15 0284 2.270 

Xmax = 7 4.303 ~ 

3 (bottom) xmaX= 15 4.365 8.228 
Leone" 4.548 8.391 
xmax = 7 1.115 5.45 1 

4 (top) x,,, = I5 1.064 5.258 
Leone' 1-210 5.492 
x,,, = 7 

5 (top) xmnr = 15 8.079 9.955 
Leone' 8-164 10.215 

- - 

0.255 
0.284 
0.356 
2.094 
I .986 
2.142 

3.863 
3.843 
4.336 
4.194 
4.282 

1.876 
2.05 1 

~ 

~ 

0.00004 0.0778 
000003 0.1570 
040008 0.0125 

-0.02247 1.478 
-0.02609 1.414 
-002239 1.500 
-0.00748 6.61 1 
-0.00852 6.443 
-000851 6.625 

0.01948 3.733 
001961 3.771 
0.01880 4.000 

0.00013 8.957 
O%Q020 9.187 

~ ~ 

-0.4286 
-0.4328 
- 0.4000 
-0.2857 
-0.2942 
-0.2625 
-0.3214 
- 2.2942 
-0.3000 

0.2188 
0.2286 
0.2375 

0.44 18 
0.4500 

- 

Table 111. Differences between long- and short-domain results for the items listed in Table I1 

Maximum X I -  X 2- 

Eddy Start X I  Stop x' Length value co-ordinate co-ordinate 

1 (bottom) 0 0.029 0,029 -0.00001 0.0792 -0-0042 
2 (bottom) 0.029 - 0.079 -0.108 -0.00362 -0.064 -00085 
3 (bottom) -0.138 ~ 0.0272 
4 (top) 
5 (top) 

~ -0.00104 -0.168 
- 0.05 I -0.193 -0,142 a.000 1 3 0.038 0.0098 
- - - - ~- - 

CONCLUSIONS 

Navier-Stokes flow computations using a primitive variable formulation and the SIMPLE 
algorithm have been conducted to investigate the effects of downstream open boundary condi- 
tions prescribed in a truncated computational domain where inflow occurs through the open 
boundary. Calculations were performed using staggered and non-staggered grid systems and five 
different open boundary numerical treatments were considered. The vanishing of the streamwise 
derivative embodied in OBCl is an erroneous procedure that amplifies the streamwise compon- 
ent of the velocity at the boundary and decreases the amplitude of the crosswise component. 
A strong reflection also occurs when linear velocity or temperature extrapolation OBC4 is 
considered. Results better than those obtained with OBCl were obtained using OBC2, that is 
equivalent to expressing the incompressible condition for the velocity at  open boundary half- 
control volume. The monochromatic travelling wave condition, OBC3, produces little reflection 
and has been shown to be highly suitable to extrapolate vector and scalar fields outside the 
domain of integration when the flow has a specified mean direction and the travelling wave phase 
speed can be easily estimated. 

The proposed pressure extrapolation condition, OBC5, in the framework of non-staggered grid 
system and pressure-weighted interpolation method has proven to be an accurate and robust 
formulation for simulating elliptic flow problems with or without recirculation at the outlet plane. 
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